

Encounter-Based Simulation Architecture for Detect and Avoid Modeling

Mohamad Refai, Michael Abramson, Seung Man Lee Crown Consulting, Inc.

Gilbert Wu

NASA Ames Research Center

Presented By: Mohamad Refai

Motivation

Problem Domain

Unmanned Aerial Systems (UAS) Integration in the National Airspace System (NAS)

- Safe integration requires Detect and Avoid (DAA) Capability
- Two subsystems
 - Surveillance: Detect & Track
 - Alerting and Guidance

Research Needs

Research Activities

- Evaluate alternative concepts of operation
- Evaluate alternative separation standards
- Evaluate operational safety
- Evaluate impact on the National Airspace System (NAS)

Simulation and Validation

- Trade-space studies
- NAS-wide assessments
- Monte Carlo simulations

- Human-in-the-loop simulations
- Flight Tests

Research Challenge 1: Large Trade Space

1/9/2019 5

Research Challenge 2: Events of Interest Are a Small Fraction of Full NAS-wide data

- 27,000 UAS flights with a total 48,000 flight hours
- 30,000 VFR flights for a total 22,000 flight hours
- In the absence of avoidance maneuvers
 - 2,000 losses of well clear with a total duration of 25 hours
 - 50 near mid-air collisions (NMAC) with a total duration of 3 minutes
- So, why process 70,000 flight hours worth of data when we are only interested in 25 hours?
- Furthermore, foundational studies often require a subset of the data but data do not readily support pre-selection
 - Terminal area operations
 - Smaller unmanned vehicles: speeds < 100 knots & altitudes < 10,000 ft

Events of Interest

- Typically have very short duration
- End to end modeling of all flights is inefficient

Solution

- Identify flight pairs that are in proximity to one another: extract and save the proximal portions of their trajectories – these are called *Encounters*
- Identify and select only those encounters that are relevant to a research study
- This is the genesis of the *Encounter-Based Architecture*

Benefits of this Approach

- Reduced data size
- Reusable standard encounters
- Repeatability since input data is fixed
- Easier comparison of alternative concepts
- Ability to identify and select subsets of encounters

Encounter-Based Architecture

Pipelined Data Processing

Encounter-Based Data Processing

Encounter Detection

- Identify aircraft pairs that are in proximity. These can potentially
 - Alert, or
 - Lose separation, or
 - Violate the near mid-air collision volume (500 ft x 100 ft)
- Do so in a computationally efficient manner

Encounter Detection Criteria

- Use simple efficient criteria to identify possible encounters
- Criteria must guarantee all events of interest are included
- Candidate: disc with radius R and height H centered on a UAS
 - Encounter starts when intruder enters the disc
 - Encounter ends when intruder exits the disc

Selective Encounter Processing

An encounter may not lead to an alert

An encounter may be out of scope

Solution: Property-Based Filtering

- Compute a set of properties for each encounter using aircraft data
- Create filters that reject encounters of no interest based on these properties
- Persist the list of remaining filtered encounters
- Use the filtered encounters in downstream processing

Encounter Properties

- DWC independent
 - Do not require DAA processing
 - Computed at encounter creation

Encounter	Ownship	Intruder	
ID	Callsign	Unique AC ID	
Start Time	Aircraft Type	Min HMD/VMD	
Duration		CPA Speeds	
Weight		CPA Altitudes	
	•	NMAC	

• DWC dependent : Require DAA processing

Intruder.DWC			
Unique DWC ID			
Max Alert Level			
Loss of DWC			

Property-Based Filters

- Composited from predicates, which compare property values to constants
- Comparison operations:
 - Equality
 - Strict inequality
 - Non-strict inequality
 - List containment
- Boolean operators:
 - ∧ (logical AND)
 - V (logical OR)

Performance Comparison

End to End vs. Encounter-Based

Experiment Summary

Trade Space (96 configurations)

- 4 DWC candidates
- 24 sensor configurations
 - 6 detection ranges
 - 2 azimuths
 - 2 elevations

Setup (21 days)

- Light to heavy VFR traffic
- 27,000 UAS missions each day
- Encounter Detection Disc
 - R = 20 nmi
 - H = 10,000 ft

For more details please attend Dr. Wu's presentation tomorrow

Encounter-Based Data Processing

DO-365 DWC: A conservative DWC that encapsulates all four DWC candidates

Create and filter encounters for 21 days

- Using DO-365 DWC
 - Select encounters by filtering on min HMD/VMD properties
 - Compute DAA alerts
 - Select alerted encounters
- Select low speed and altitude encounters

- Runs parametric study: 4 DWC and 24 sensor configurations
- Generates final metrics

End to End Data Processing

- Full airspace-wide end to end simulation
- Flights are modelled from departure to destination
- Computational time is estimated
 - Measure for a single day simulation
 - Scale to 21 days
- Simulation results were compared to Encounter-Based approach for the same day: results were identical

Results

Computation Time

Total Time Processing Stage (hrs) End **DAA Processing** 3,651 End to **Metrics Generation** 3,024 6,675 **Total** Flight Modeling 0.75 **Encounter-Based Encounter Selection** 78 **DAA Processing** 346 **Metrics Generation** 834 **Total** 1,259

Encounter Selection

Processing Stage	# Input Encounters	# Output Encounters	
Encounter Detection	_	9,700,000	
HMD/VMD Filter	9,700,000	2,100,000	
DAA Filter	2,100,000	130,000	
Low SWaP Filter	130,000	83,000	

Realized Benefits

- Reduced data size
 - Reduced flight time
 - Reduced number of encounters processed
- Reduced computation time
- Increased coverage of the trade space
- Standardized encounter suite
- Alternate encounter models supported

Summary

End to End Simulations

- Focused on full airspace modeling
- Departure to destination
- No means for selecting encounters to process
- Consumed significant resources
 - ⇒ Sparse trade space coverage

Encounter-Based Architecture

- Tailored to suite research needs
- A priori encounter filtering
- Efficient use of resources
 - ⇒ Better trade space coverage
- Standard encounter suite

Future Work

- Next study is closed loop
 - Resolution and pilot delay
 - Surveillance uncertainty
- Performance enhancements
 - Post processing tool
 - Module optimizations
- Advanced architectures
 - Scalable architectures: concurrency and parallelism
 - Big Data architectures
 - GPU processing

Questions

Backup

Unmanned Aerial Systems Integration in the National Airspace System

Data Sources: State of the Art

- VFR data: 84th Radar Evaluation Squadron (RADES)
- Three approaches currently in use
 - MIT encounter model: VFR-VFR
 - Create database of statistical features of VFR encounters
 - Create weighted encounters with same statistical characteristics as the VFR data
 - Parametric encounter model: Geometric
 - Create encounters by manipulating encounter variables
 - Speeds, altitudes, closest point of approach, etc.
 - NASA encounter model: UAS-VFR
 - Develop a set of UAS flights that represent today's view of future predicted missions
 - Use VFR data from 21 days in 2012 (light, medium, and heavy traffic)

Java Architecture for DAA Extensibility and Modeling (JADEM) – Prior Simulations

- A general purpose simulation tool
 - DAA concepts
 - Safety assessments
- Supports
 - Testing and validation
 - Parametric studies
 - NAS-wide assessments

JADEM

SaaControl Limitations

- Behavior is fixed in code
- Ingests and process all input data
 - A typical one-day scenario includes
 - 27,000 UAS flights and
 - 30,000 VFR flights, but only
 - 2,000 losses of well clear and
 - 50 near mid-air collisions
- Does not persist encounters in standard format
- Lacks mechanism to select types of encounters to be processed

Encounter-Centric Viewpoint

Processing Pipeline: Modular & Composable

Encounter Detection – Alerting Structure

- Separation Criteria
 - Spatial
 - vertical range
 - horizontal miss distance (predicted minimum horizontal range)
 - Temporal: modified tau
- Alerting Time: an alert is declared no earlier than a given threshold

Name	Buffered Well Clear Criteria	Alerting Time Threshold	
Warning Alert	$DMOD = HMD^* = 0.75 \text{ nmi}$ $Z_{THR} = 450 \text{ ft}$ $T_{mod} = 35 \text{ s}$	25 s (t _{CPA} ~ 60 s)	
Corrective Alert	$DMOD = HMD^* = 0.75 \text{ nmi}$ $Z_{THR} = 450 \text{ ft}$ $T_{mod} = 35 \text{ s}$	55 s (t _{CPA} ~ 90 s)	
Preventive Alert $DMOD = HMD^* = 1.0 \text{ nmi}$ $Z_{THR} = 700 \text{ ft}$ $T_{mod} = 35 \text{ s}$		55 s (t _{CPA} ~ 90 s)	

Thresholds for Detecting Encounters

- Alerting structure defines temporal thresholds equivalent to time to CPA (t_{cpa})
- Maximum range occurs with a head-on encounter
 - $R = t_{cpa} \times \Delta V_{max}$
 - Given R, slower approach speeds mean longer encounter duration

t_{cpa}	ΔV_{max}	ΔV_{\perp}	R	Н
90	600 knots	6,000 fpm	15 nmi	9,000 ft

Encounter Detection – Optimizations

- Data is processed in time windows (typically 5 minutes)
- Grid method
 - Map intruder positions for each processing window to a fixed horizontal grid
 - Cell size is obtained from window size and maximum approach speed
- Leap-frog through the time series
 - Assume intruder and ownship are head-on: $\Delta V_{max} = |V_1| + |V_2|$
 - Calculate interval to skip: $\Delta t = (range R) / \Delta V_{max}$

./9/2019

Encounter Specification

- 1 UAS
- 1 intruder
- Time Series
 - Positions
 - Velocities
- Encounter Properties

Scenario Selection

